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In  recent  years,  deep  learning  has  made  tremendous
achievements  in  computer  vision,  natural  language  pro-
cessing, man-machine games and so on, where artificial intelli-
gence  can  reach  or  go  beyond  the  level  of  human  beings.
However, behind so many glories, some serious challenges ex-
ist  in  the  bottom  hardware,  hindering  the  further  develop-
ment  of  Artificial  Intelligence.  While  the  remarkable  Moore’s
Law becomes slower and computing consumption on von Neu-
mann bottleneck can no longer be afforded, current accelerat-
or chips are difficult to deal with demanding massive data, es-
pecially in some power-limited scenes.  These significant chal-
lenges  lead  to  a  natural  upsurge  for  exploring  new  comput-
ing  paradigms,  i.e.  a  computational  scientific  revolution[1].
Such computing paradigm is not expected to replace the von
Neumann  architecture  that  has  worked  well  in  the  past,  but
forms  an  important  compliment  to  the  previous  architecture
that can no longer handle with more and more emerging com-
puting  problems  and  applications.  e.g.  those  in  big  data  and
artificial intelligence.

Candidates  for  the  new  computation  paradigm  include
in-memory  computing,  quantum  computing  and  neuro-
morphic  computing,  which  can  respectively  solve  some  im-
portant  problems more successfully  than classical  computing
systems,  although  they  have  demonstrated  only  limited
scope  of  application  and  accuracy  to  date.  Among  them,  if
we want to follow up the victory that deep learning has won
and  further  build  a  general,  efficient  and  brain-like  intelli-
gence, it is suggested to develop a paradigm of neuromorph-
ic  computing,  which  combines  architecture,  algorithms,  cir-
cuits  and  devices  tightly.  From  this  view,  deep  learning  is
only a precursor to the approaching era of neuromorphic com-
puting.

It has been about three decades since Carver Mead got in-
spiration  from  human  brain  and  first  proposed  the  concept
of  neuromorphic  computing[2].  It  takes  advantage  of  analog
signals  to  imitate  electrical  properties  of  synapses  and  neur-
ons as basic computing elements, and assembles them to func-
tional  systems following simplified  brain  operating rules.  Our
brains utilize spikes to transmit and process information, run-
ning on the edge of chaos, so they have incredibly rich compu-
tational  dynamics,  as  well  as  powerful  capabilities  for  spati-

otemporal  integration.  Since  the  introduction  of  neuromor-
phic  computing,  many  impressive  exploratory  works  have
been  completed,  like  IBM’s  TrueNorth[3] and  Intel’s  Loihi[4].
However,  a  research  consensus  has  not  been  established  re-
garding  neuromorphic  computing  yet.  From  the  device  per-
spective,  obviously  synapses and neurons composed by mul-
tiple  transistors  are  costly,  which  restricts  further  scaling  up.
Fortunately,  some  emerging  devices  such  as  memristors  can
imitate  synapses  and  neurons  directly  with  its  inner  physical
dynamics in single cells,  thus holding great  prospect  in neur-
omorphic hardware. These devices can be compatible with cur-
rent semiconductor technology, and can be used for construc-
tion  of  both  deep  learning  accelerators  and  neuromorphic
computing  systems  (Fig.  1).  From  the  algorithm  perspective,
spike-based  neural  network  models  are  immature  compared
with  state  of  the  art  artificial  neural  networks  on  existing
benchmarks  and  tasks[5].  Nevertheless,  it  should  be  noticed
that  existing  effective  algorithms  are  all  suitable  for  classic
computing  systems,  and  the  advancement  of  neuromorphic
computing  necessitates  its  own  algorithms  and  benchmarks.
Thus,  there  is  an  incommensurable  way  between  these  two
computing paradigms.

Neuromorphic  devices  are  memristive  devices  essen-
tially  that  can  change  resistances  through  internal  physical
states and external electrical stimulations, which naturally cor-
respond  to  synapses  with  adjustable  weights.  It  has  been
proved  that  various  emerging  devices  based  on  ion  migra-
tion, phase transition, spin and ferroelectricity can obtain excel-
lent  modulation  effects.  For  deep  learning  accelerators,  ideal
neuromorphic  devices  should  have  high  state  precision,  low
variation,  long  retention,  linearity,  as  well  as  large  dynamic
range.  However,  current  neuromorphic  devices  cannot  com-
bine all aspects of the abovementioned performances. For ex-
ample, memristors based on ion migration have inevitable vari-
ations, and devices based on phase transition suffer from con-
ductivity  drift.  In  some  interesting  cases,  these  imperfections
can be used as  computing resource instead.  The nonlinearity
in  conductance  modulation  can  accelerate  simulated  anneal-
ing process in transiently chaotic neural network for the solu-
tion  of  various  optimization  problems[6].  Moreover,  the
stochasticity  in  devices  conductance can be utilized as  a  ran-
dom matrix  in  direct  feedback  alignment,  reducing the  train-
ing cost of neural networks (Fig. 1)[7].

For  spike-driven  neuromorphic  computing  involving  the
coding and representation of  time information,  neuromorph-
ic  devices  should  have  capabilities  to  process  sequential
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spikes  and  behave  distinctly.  Spike  timing  dependent  plasti-
city (STDP), which attached computational significance to syn-
apses,  can  be  locally  realized  by  a  pair  of  connected  volatile
and  nonvolatile  memristors[8].  Furthermore,  the  leaky  integ-
rate  and  fire  dynamics,  which  are  symbolic  computing  func-
tions of neurons, can be realized by a volatile device and its in-
trinsic  capacitance[9].  The  inner  dynamics  of  devices,  espe-
cially  in  Mott  phase  transition,  can  bring  powerful  computa-
tional functions, such as chaotic neurons[10] and high-order dy-
namics[11].  These  devices  are  naturally  suitable  for  the  imple-
mentation  of  spiking  neural  networks,  and  it  will  be  appeal-
ing to further find out how far the computing complexity can
go  ultimately  relying  on  device  dynamics.  Such  efforts  may
transform the simplicity of computing elements in Turing ma-
chine framework to the sufficient complexity in neuromorph-
ic computing framework from practice.

Recently,  it  has  been  proved  that  a  machine  with  neur-
omorphic  completeness  can  solve  any  Turing-computable
problems through approximation[12]. Its basic computing oper-
ations are vector-matrix multiplication and threshold. A cross-
bar  array  integrated  by  neuromorphic  devices  can  calculate
the  vector  matrix  multiplication  with  great  efficiency,  which
is  the  most  computationally  intensive  part.  This  computing
method relies on Ohm's law and Kirchhoff's law, and the non-
volatile  nature  of  memristors  can  help  avoid  frequent
memory  access.  However,  there  are  still  three  major  prob-
lems to be settled. First, current external circuits, such as ana-
log/digital  converters,  are  not  efficient  enough,  which  may
eat  into  the  advantages  neuromorphic  devices  bring.  It  is
therefore necessary to design specialized analog/digital conver-
tors  for  a  specific  class  of  applications  in  neuromorphic  com-
puting.  Second,  there is  no real  spatial  architecture driven by
data  flow  for  neuromorphic  devices  yet.  Third,  it  is  recog-
nized  that  neuromorphic  device  array  has  little  possibility  of
hardware multiplexing,  since the storage is  always waiting to
be used. It is often accompanied by mixed-precision quantiza-
tion, when mapping a specific neural network on limited hard-
ware resources.  It  is  thus  suggested to  develop EDA tools  for
automated  deployment  of  different  neural  network  models,
where  different  layers  are  arranged  for  hardware  multiplex-
ing.

As  neuromorphic  computing  can  have  higher  efficiency
on some tasks and has Turing equivalence with existing com-
puting  paradigms,  the  unique  superiority  of  neuromorphic

computing itself is still  unclear. Some studies have made pre-
liminary  explorations.  Since  spike-based  representations  can
efficiently  encode  time,  the  neuromorphic  hardware  can  de-
tect the synchronization of spike sequences in fine time scale
among  noisy  signals[9].  Furthermore,  volatile  and  oscillating
devices  can be assumed as  neuron groups for  reservoir  com-
puting in automatic generation of  patterns[13, 14].  The oscillat-
ing devices can also realize microwave neural processing and
broadcasting  with  great  robustness[15].  More  complex  func-
tions  in  brain,  such  as  consciousness,  emotion  and  attention,
are  still  important  research  topics  in  computational  neuros-
cience  and  their  mechanisms  remain  elusive.  Among  others,
working  memory  is  a  dynamic  mode  of  information  storage
and processing in the brain, which is assumed as the basis for
future advanced functions like attention and can be implemen-
ted on neuromorphic hardware (Fig. 1). Proper symmetric dis-
tribution of  synaptic weights can form a continuous attractor
neural  network,  where  the  neuronal  population  coding  is  al-
ways representing states in a continuous curve or plane. There-
fore,  it  has  significant  superiority  in  processing  the  dynamic
spatiotemporal  information,  compared  with  classical  discrete
storage. By introduction of working memory into neuromorph-
ic hardware, the computing paradigm may expand the integra-
tion of storage and computing at device level to a structured
storage at the system level. Furthermore, it is promising to re-
place  a  mathematically  complex  function,  such  as  attention
in  Transformer[16],  with  inner  dynamics  of  single  devices.  The
exploration on dynamic spatiotemporal intelligence is benefi-
cial  for  efficient  combination  of  algorithms  with  physical
devices, similar with what our brain is doing (Fig. 1).

In  the  more  than  Moore  era,  it  is  meaningful  to  make  a
transition  in  computing  paradigm,  figure  out  tightly  en-
tangled  theories,  methods  and  standards  and  set  bench-
marks. As for neuromorphic computing, we believe the emer-
ging neuromorphic devices will  trigger a radical  shift  in com-
puting  paradigm  eventually.  The  new  computing  paradigm
may first  play  a  role  in  selected areas,  e.g.  edge computation
with  ultra  low  power  consumption,  but  eventually  lead  to
more  capable  computing  systems  and  higher  intelligence  as
well as vast applications.
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Fig. 1. (Color online) A possible roadmap of neuromorphic computing.
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